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ABSTRACT

The correction to transonic small-disturbance theory induced by the

addition of contaminant particles (e.g., dust) to the gas is analyzed. Two-

phase flow equations governing the particles and inviscid fluid are used. The

} dusty gas version, a particular limit of the flow equations in which the

| volumetric concentration of the particles is small, but the mass

; concentrations of particles and fluid are comparable, is employed. 1In this

i setting, a model in which the gas and particles may be viewed as an equivalent
gas with modified properties, is derived. This "generalized gas” model

- behaves like a normal gas with a modified value of Yy (the ratio of specific
heats). Using this model, a simple method of analyzing transonic small-
disturbance theory, by employing a modified transonic sim!.arity parameter, is

used to account for the effect of the dust.
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SIGNIFICANCE AND EXPLANATION
Many fluid flow problems of interest concern the behavior of a gas which

has been contaminated with small particles of dust. The presence of the dust
can cause significant changes in the flow, and it is important to analyze an
explanation for this phenomenon. This is done by examining a model in which
the gas and dust exchange heat and momentum. In the limit of low volumetric
concentrations of dust, but with strong coupling between the phases, the model
equations are closely approximated by the equations for an adiabatic ideal
gas, with modified values of the density and ratio of specific heats. By the
use of similarity transformations of these equations, it is possible to relate
solutions of flow problems for a gas with dust to solutions of corresponding
problems for a clear gas, thus giving an explicit way of calculating the
effect of the dust on the flow. Because of their simple form, the equations
of transonic flow are used to provide an example of this procedure. It is
found that the transonic flow around a thin airfoil for a gas with dust is

. equivalent to the flow around an airfoil with modified thickness, at a

different free-stream mach number.
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TRANSONIC SMALL-DISTURBANCE THEORY FOR DUSTY GASES
ponald A. Drew* and Fredrick J. Zeigler**
1. INT!!ODUC'I‘ION

The design of mechinery which utilizes or involves the flow of a gas is important in
many practical situations. Often such machines must be operated in an environment where
the gas is contaminated with small particles (dust) which may degrade performance, cause
wear or necessitate filtering, all with undesirable economic consequences.

In order to better understand the flow of both the dust and gas, we examine a model in
which the gas and dust exchange heat and momentum. The equations of conservation of mass,
momentum and energy for each material are simplified by assuming low volumetric
concentrations of a relatively heavy dust. This set of dusty gas equations is then
further approximated by assuming strong coupling between the materials. The resulting
system of equations is analogous to the equations for the adiabatic motion of an ideal gas,
except that the gas constant Y and the density om are modified to reflect the heat
capacity and the density of the dust. We further show that this generalized gas supports
discontinuities in properties (generalized schocks) which consist of a shock in the gas,
followed by a relaxation back to equilibrium (both thermal and mechanical) of the dust
particles.

We note that the addition of a moderate amount of dust (0.7% by volume) can increase
the Mach number of a flow by an appreciable amoun{ (~ 25%). This could have serious
consequences in operation and/or efficiency in many devices.

Finally, we discuss the transonic small-disturbance theory. It is shown that the
effect of the dust is to modify the flow in such a way that it is equivalent to the flow of
a clear gas at a different Mach number around an airfoil of a different thickness. This
suggests a way to study the behavior of airfoils of different thicknesses (but similar

shapes) may be to add dust to the flow.

*Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12181
**General Dynamics Corporation, Fort Worth Division, P. O. Box 748, Mail Zone 2882,
Pt. Worth, TX 76101

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2. PEQUATIONS OF TWO-PHASE FLOW

The fluid is assumed to be inviscid, and to contain small particles of ‘dust’ such
that there is no exchange of matter between the phases. Under these conditions, equations

governing the flow of particles and fluid are

dap .
-—Eat + V-appqp =0, (2.1a)
3(1 ~a)p .
7t + V(1 -c)pqu- o, (2.1b)
>
q
—L , % .9k . -
upp(at +a qu) = —a¥p + ab (q, qp) ' (2.2a)
L 4
q
__f > o » - - » - L d
(- u)pf(at +a, qu) = =1 -a)Vp +abyla - a,) , (2.2b)

1 2
etz g) 0, 1.2 .
app[ 3 +aq V(t:p +5 qp)]
» » » *» L4
- - VC'pqp - ch'qp + °bn(qt - qp)-qp + aﬂ“('rt - 'rp) . (2.3a)
1

2
ae, +5 q5)
—f 2 £ 1
(1 - et [—E5 25 4 Gvee, + J o] -

» > > > >
= =9(1 - a)Oqu - pVa-qP - ab"(qt - qp)-qp + aﬂH(Tp - 'l'f) . (2.3b)

where 2.1, 2.2, and 2.3 are equations of conservation of mass, momentum, and energy for the
particle and fluid phases. Here ; represents the velocity (p for particles, f for
fluid), a is the dust volumetric density = dust volume/total volume, p denotes the
phasic density (for the particles, pp = dust mass/dust volume), p is the pressure, and
€ is the internal energy per unit mass.

In addition, equations of state are needed for both phases. The dust is assumed to be
incompressible

pp = const ; (2.4)
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for the fluid, the ideal gas law

- ' .
p=R p’!'l'f (2.5)

holds. The particles are assumed to be calorically perfect, so that

€ = c(p ) .
P v p
where <:‘(,p ) denotes the constant volume specific heat of the particles; and, for the gas,

(f)
cf = <:v 'l', + p/pt o (2.6)

The terms on the right of (2.2) and (2.3) involving by, and L reflect momentum and
energy transfur between the particles and gas. Por b" we assume the general form
3 * *> 1
by =& SoPeldp el 0 g 2.7)

where cp is the drag coefficient, and a is the effective particle radius. If the

relative velocities between the two phases are small,

Sp " 24/Re (2.8)
where
Re = :*‘q ' (2.9)
f
U being a reference velocity. Then
9 1
b" =2 Pe¥ .2 (2.10)

according to the Stokes law.
Expressed in terms of the Nusselt number Nu, the heat transfer coefficient Hy is

3 1
HH-Z‘““. .2 (2.11)

where « 1is the coefficient of heat conductivity. By including the Prandtl number
PY - uf/x, this may be written

1
Hy=3NuPrb, . (2.12)
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The dusty gas limit of the previous two-phase flow equations corresponds to the limit i“
a << 1, Py << pp and cop ~ g In order to exhibit this limit explicitly we first :nq
scale the variables and put the equations into nondimensional form. -:?
Thus, we assume the problem contains a typical length scale L, velocity scale U, fﬂf
ety
gas density scale [, temperature scale Tgr and volumetric concentration scale A. We . 1
g then set
M L L d *
x = x/L (3.1a) _r
- -
t = tU/L (3.1b) ..j
.t "
a(x,t) = Aa(x,t) (3.2a) o
b, (x,t) = Tp,(%,¢) (3.2b) -
f f -
Ep(:’e,e) - U3 (%, t) (3.2¢) l:%
+* » > > ° 'l':
af(x,t) = Uqf(xlt) (3.24) )
» 2% +» *
pix,t) = T0 pix,t) (3.2e)
e (x,t) = U (X, (3.26)
P ’ P ’ .
»> 2% » *
Gt(x,t) = U efsx't) (3-29)
> N
T (x,t) = T.T (x,t) (3.2h)
o (X0t) = T (x,
+ Il S
Tf(x,t) - Torf(x,t) . (3.24)

The following dimensionless combinations will be used:

s=Tsp {3.3a) .
P .
€ = Tu/b AL {3.3b)
ho=HT /b (3.3
M o/ M .3¢)
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Y = n'-ro/u2 (3.3d)
(p) 2 —d
- (3.3e) .
c=c, 'ro/u ‘..4
. -9
- (£) e
. 3.3f g
c=c, 'ro/U ( ) ._‘_::
-
The dimensionless two-phase flow equations are - -
2, yeag) =0 (3.4a)
at P
31 = nalp, . -y
+9e(1 - Aa)p,q, =0 {(3.4b)
£
e
»
322‘; 9: 3.+L(: :) (3.5a)
o ap°Vap = ~sp + 3 (9 - ap .
a’ ~ ~ -~ -~
a A q - A aa a
£ + > 1 »> >
- — L] B - L v * - - L]
1 Aa)of(a; +a, qu) (1 -~ aa)Vp + Zalg, - q.) {3.5b)
- 1°2
~3e_+=>g) ° L. -
2 - 142
af . + 3 Vi +-q9)] =
It P P 2°7p
- aVarpy - splach + S a(h, -G + 2o -1 (3.6a)
P €A 4 p P €A f p
- 12
“a Be, +=q) - .. -
£ 29% 12
(1 - aad [ = * Ve, + 5 ) =
at
R - ann 1% » .+ _n°- R
= 9(1 - m)epq, - AVarq - ¢ alag = q )q + JalT T . (3.6b)

The dusty gas limit corresponds to A + 0, 8 + 0 (since Df << Dp = const implies

!'/np =8 ¢< 1), with £ = A/S remaining fixed. The dusty gas formulation is

3_? + T (;:,p) =0 (3.7a)

at

A Wi

Py - . . j
f > @

— e (e 3.7b

3; P, = 0 ( ) —
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a’ -~ ~ -~ -
32 » 2» 1 -+ . RS
a; + qpqup - o (qf qp) (3.8a) ‘

L d
-~ 3q NN an ° N .
£ > > 1.+ >
— Y = - + - - . -
of(a; *q, qu) Yp + ¢ c(qp q,) (3.8b)

(e + = ) 2 e A a
Tp T2 s 1220 1+ _+.+ h o & e
[ -~ +q Ve, + 54 )] =27 (a q)q, + o (T, - T) =0 (3.9) o .

at .

. 5 oo

. e, +7q)) S .. - ot
Pe L., a Ve, + )] =
it .

- - e ek

= Vepg. - L aly, - a5 +Rar -1, . (3.9b) ik

£ € £ p p € P £ J

The equations of state take the form

p= zpf'.l'f v (3.10)
ep = il: ' o (3.11)
- + . . ~-:
€ c’l‘t p/s'-v’.r (3.12)
-;.:
2
:
.y
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4, GENERALIZED GAS MODEL
Let us see the effect which the effective particle radius, a, has on the dusty gas

equations. By using the Stokes drag formula, we may write

2
~2Ua” 1 _ (uayeaydy_2
- 3PS - @INCH . (a.1)

£ Pe
Thus, for sufficiently small particles, € will be small. 1In fact, for many flows

Re a and a/L are small, but A is also small. The rest of our discussion will be

limited to the regime € << 1.

Por this case, inspection of equation 3.5 shows that ;f L ;P (we now drop the carets
for convenience) unless the accelerations are large. This suggest a model which we term
the generalized gas model, which has the property that ;p = ;f + 0(e), except in places
where the flow fields change rapidly. We shall call these regions of rapid change
generalized shocks. As we shall see, this model is analogous to a gas with changed
properties.

Consider the flow fields a, ;p' ;p' etc. as functions of ;, t, and €. 1In the
generalized gas model, we consider a limit of the dusty gas equations in which € » 0,
with ;, t held fixed. Away from generalized shocks, we therefore consider an expansion

a(x,tjc) = 0(0)(x,t) + €c(1)(x,t) L PN (4.2)

with similar expressions for the other flow quantities.

Substituting these expressions into the dusty gas equations and equating terms of

equal order to zero gives the following: }?-ﬁ

*(0) +(0) _ » S
e = qp s q (4.3) -:
() _ _(0) _
Tf = Tp =T (4.4)
(0)
2a (00
3t + Yea q=0 (4.5)
39(0) ~-—J
£ () 1
5o *+ Yoy Ja =0 (4.6) i
- - A
|

Pe
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t(%é + qvq) = 3:” - 3;” (4.7)
péo)(-:% + 5evg) = -vp'? a(o)(;;‘) - ;;”) (4.8)
f[a(c'r ;t-;- < + 3Ver + 3 q0)] = (3;” - 5;”)-5 + h(r;" - 'r:,”) (4.9)
p;m[a(eéo)a: % ) . ‘q-V(c,‘_.O) . _% N

- up(®)f u‘°’(§é” _ 3;1)).5 . hm(0)(,!.}(’1) - Té”)
p® - WEO)T (4.11)
eéO) - p(O)/o;O) . €.12)

This model allows us to derive the equations needed at the lowest order. Adding
(0)

a times (4.7) to (4.8) yields
>
(péO) + a(O)f)(g% + ;.va) - 'VP(O) (4.13)
A similar combination of (4.9) and (4.10) gives
(0)f3cer , . o° (0) r3cr .
Pe 3 + a¥eT] + a3 + qever] +
1 2
35 q°)
(0) (0) 2 + 1 2
+ g +al N[——4+a(34q7)] +
(0) , (0)
IHp /o
(0) £ *. (0), (0),y _ _p,.(0)*
+o, [ *+aVe /o, )] =-Vp q. (4.14)
Additionally, (4.5) and (4.6) may be combined as
{0) (0)
dlp +a 4 3p
£ o ta (0} (0) 3> _ o .M o
e + Vv (of +a flg=0 Yl v Pl (4.15)
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(0) (0)
14

(0)
,—6 & gn(—) + &ovzn(uo/o;m) =0 .

) is constant for a fluid particle.

0 0
Therefore « /p;
. The energy equation may be rewritten in order to yield further information.

>
taking the dot product of q with (4.13) shows that

3(3 a°)
- (0) (0) 2 > 1 2 S (0)
o (pf +a f)[ Ty + g° (3 q )] = -q+Yp .
[ |
. Then, from (4.14), we are left with
. (0) , (0)
- - alp /o )
L (0) (0) aT > (0) » (0) , (0) (0), »
o (pf c +a fc)[sz + q~’T] e, [ 3t + q*V(p /pf )] = -p' 'Veq .

wWith the expressions (4.6) and (4.11), this yields

(0)
- Bp
(0) (0) (0) aT »> * (0)
(DE c+a fc + Pe r)[sg + q'VT] = rT[ 7t + q~fo ]

Therefore, following a fluid particle,

T = Conste (920))7"

where

(0)
) y+e £ _<c
- c + a(o)fc/DEO) 920) c+r
Y=x3 =
c4+rx + u(o)fc/péo) )+ a(O)f c
(0) *
pf c+r

is constant on each streamline.

-—a . 8 ma. o me e e e e A oA i B B, g DT P Moo

where pn = p +a £ is the mixture density. Using (4.5) and (4.6) we obtain

(4.16)

First,

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

E

Y

e g
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Since 920) + O(O)t - pm, and a(o)/p; ) is constant following a fluid particle,
(4.20) may be written ——
._ ¥
T = constep)”! (4.22) .‘
" "y

where the constant in (4.,22) i{s 1t + c(O)f/pzo) times the one in (4.20).

We now assume that 0(0)/b;0)

have a constant value of a(O)/bLO) far upstream for all time. Then, Y and the constant

is the same for all streamlines at t = 0, and that we

o o
_L:‘l‘!-.ﬁ

in (4.22) are constant for the whole flow field for all time. Dropping the (0) super-

2l

script for the pressure, the generalized gas model is

p
j

3 -
ﬁ + V‘p.; =0 (4.23) .i
. L
> -
0p(32 + q+93) = -9 , (4.24) N j
/py = ( Y 4.25 &

P. Po Dm/Do, ) (4.25)

.

'

VRO 5‘1_‘. Vol

where oo and p, are constants. Thus, a dusty gas with small dust particles behaves
like a gas with a modified Y. We emphasize that this derivation assumes that we are not
near a shock.

We note that the speed of sound for a generalized gas is given by g

. 2 (0) ~ (0)

2.8 e, Yor xp_) We = -
’
dom Pr Yo p(0) h (4
£ e
where a is the speed of sound in the clear gas. Moreover, since pm - p;o) + a(o)f, ';;
o {1 Y
e 1 1 1
Yo Ty o0 P-4
1+ .
p(0)
f
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5. GENERALIZED SHOCK STRUCTURE

In order to derive expressions which measure the correction to transonic small-
disturbance theory caused by the addition of dust to the gas, we must examine how shock
waves fit into this framework. The generalized gas equations (4.23)-(4.25) are not valid
in regions of rapid change. 1In this section we shall derive equations valid for such
regions, for the purpose of obtaining shock relations which can be used with the equations
of the previous section. We assume that the conditions for a dusty gas are not violated in
the shock, so we shall start the analysis by using (3.9)-(3.12).

We consider only planar shocks, with the generalized shock location given by

x = xs(t) . (5.1)
¥y, z arbitrary.

A coordinate system fixed in the shock will be used, with the positive x-axis in the
direction of net flow through the shock. Setting X = x - xs(t), Y=y, 2Z2=12, T=2¢

transforms the dusty gas equations to

d(aU ) 3(av ) d(aw )

da ___p R P
art Tax YT ay T ez 0 (5.2)
2 ? V. 2
e, Pe% P, P, 5.3)
ar X Y 3z .
2
Wy o, W, W axg
T * Up % vp 35yt wp 3z "t (Uf - Up) - dtz (5.4)
3 *Updx *Vpay *¥paz " Ve~ V) (5.5)
My M, M M
EY up x vp w wp 3z e (wf - wp) (5.6)
v au au v a’x
W, W W W cipLa ., Ly s
oelar * Veax *Vedr * Ve oz ax e Wp = Ug) - Py a2 (5.1
av v v v
—£ £ £ £y _-3p, & -
elam *VYedx *Vesy *Yedaz) " axte Vp o Ve (5.8)

-11=-
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W Bwf awt 3wf -3p . &
Pelam *Vrdx *Vedw *¥edz) T azte Mp ¥
At *Voar * ) T T~ T
ar ar ar U, av. 3w
-~ 0T¢ £ £ £ £ e Y
peclzm * Y% *Ve3w * ¥z 23z *3w *3z)

a 2 2 2 h
> [(Uf - Up) + (Vt - Vp) + (Hf - Hp) ]+ c c('rp - Tf) .

dx
= - —8 -av W =w .
In the above, Up,f up,f at * Vp’f p.t’ P.f p.f
coordinate system dictates UP P > 0.
’

Ve i i ulh St i Skt Jhan st A Pafir-al

The choice of

(5.9)

(5.10)

(5.11)

To observe the details of the shock structure, we examine a distinguished limit of

these equations most appropriate for regions of rapid change. 1In order to get the richest

equations, we choose £ = X/€. Then we have

3(al )
—g- -0 (5.12)
€
3(p U))
£e
3 -0 (5.13)
U sE = g (U - U (5.14)
AP ’
U Ee Ty Ve - V) (5.15)
M1
U FEe e (M - W) (5.16)
2
-h - . -..
ofvf Y3 3 + a(Up Uf) (5.17) -l
Pele g = OV, = V¢) (5.18)
w .
N - ’
Pels JE- = AW = W) (5.19) |
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\ T h U
cup _235 = s (-1-f - Tp) (5.20) -,
o e
- 31‘{ aut’ 2 2 2 @
#4037 = ~P 3¢ - al(U, - U v, + vp) AL PR ]+ hafr =T . (5.20) _:.;1
Boundary conditions are given as:
. -—
a 'S
' Uu*ut-'ﬁ: VV*vt)WWOVt; ]
' £ p ac £''p £'p .
. t t LN
: ‘l'f,'rp*'l"t; a+a; Df0pf ag £ + = . -:
;- *
2, ——
L’] Let us consider the possibility that these equations have a shock solution, that is, a :’ 1
. 4
[f. discontinuous solution which satisfies appropriate jump conditions. Equations (5.12)- ::
.- ]
'-.: (5.20) give rise to the jump conditions . :-;.
> au ] = 0 5,22
. [ p] ( )
F:_
[Dfo) =0 (5.23)
2
(Ul =0 (5.24
b )
[uv) =0 (5.25)
PP
[Uw)] =0 (5.26)
PP
[DUz+)-o (5.27)
ge P .
[pfufvfl =0 (5.28)
[ofufwf] =0 (5.29)
fcUT ] =0 5.30
| ] ( !
tpfcuf'rf + pU£] =0 (S.31)
@ !
~——1
4
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Conditions (5.22), (S.24), (5.25), (5.26), and (5.30) show that the particle
1 properties are continuous across a shock. The other conditions show that the gas
2

properties are not affected by the dust properties in the shock: it is a “"classical” gas

shock.

Using (5.23) 4n (5.28), (5.29) esasily shows that Ver "t are continuous. With

- L
7 i R R .
N PP T ) ot g et P —

PETET Y

vp'f and Wp'f continuous across the shock, and being governed by (5.15)}, (5.16), (5.18}),
(5.19) in the rest of the transition region, this combined with the boundary conditions
shows that vp - vf and wp - ilf throughout the generalized shock.

The remaining differential equations describe the evolution of the gas and particle

h
daa

flow on the length scale €. The smooth evolution must be on the E-positive side of the

shock, since the solutions will be well-behaved as £ + 0. L
Let us now examine the transition region, the section behind the shock where the j
digcontinuity in U, has caused up U e We assume that the actual shock ig at £ = 0, -
From (5.12) P

0+ 0+ + o+ dx! D]

au, =4, (t) =a U7 =a (v -5 - (5.32) i)

+ 0~ + 0=
But particle properties are continuous, so c.o =a , 00 =g , and

dx dx
- - 0- 0~ o+
a (u -—".dt)-a U, =a (u -d—t‘

. (5.33)
Using (5.13) we may similarly derive
: “o
"+ dx .. _ qa . :
of(u - —ldc ) = pf(u - —.dt ) . (5.34) .'_:_:1
- - + 0+ - ".i
. Therefore a /pt = /pf, and -
' o Ty e P
pm(u TS ) = pm(u -3t ) . (5.35)
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To get the total momentum, we add af times (5.14) to (5.17), which yields

‘
£
i
|
h

2 2
afus +p Uy +p = ult) . (5.36)

By an argument similar to the one leading to (5.35) we find
- - dx 2 - U ax 2 +
Dm(u - —ldt ) +p = pm(u - _!dt ) +p . (5.37)

By taking a linear combination of (5.20) and (5.21), and using (5.14) and (5.17) on

the resulting expression, we may derive the energy equation

3 3
+
uchpr + pchfo atUp/2 + pfuf/z

The corresponding jump condition is

+ pu, = e(t) . {5.38)

f

- -, _ ax 1 - - dx_ 3 _ . 9
@te o - G+ oLl - gh) e -

ax dx dx
+ .+ B\t .1 4+ 3 + +
= (a fc + pfc)(u e & MY 2 pn(u - Ezlﬂ +p(u - ;:l] . (5.39)

Two equations cannot be explicitly integrated across the generalized shock. They can

be taken to be

—L .1
up % " F (v, - up) R (5.40)
—L2.h .
= - . .41 .
cUp x ; (Tf Tp) (5.41) ]

We note that (5.40) and (5.41) govern the non-equilibrium evolution of the velocities
and temperatures back to the equilibrium values U’ and T’. For the generalized shock

structure we describe, it is sufficient that these equations imply Up + Uf and Tp * Tf

The jump conditions (5.35), (5.37), and (5.39) show that for a generalized gas, the

&

generalized shock relations are precisely those for a gas with equivalent properties. The

bt

shock thickness if 0(e).
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6., SMALL DISTRUBANCE THEORY

with the derivation of the generalized gas model (4.23)-(4.25) and generalized shock
conditions (5.35), (5.37), and (5.39), we have achieved considerable simplification of the
original problem. The dusty gas may be regarded as an equivalent gas with a modified value
of Y. Assuming that we have potential flow, it is therefore possible to formulate a
small-disturbance theory for transonic thin airfoils in dusty gases, analogous to that in
(2]. The transonic similarity parameter for this case is a function of the new value of
Y. It will be shown how this modified similarity parameter is related to the usual one
for the case of no dust, so that a method of estimating the effect of the dust on the usual
small-disturbance theory may be achieved.

We formulate the boundary value problem for a thin airfoil, in a dusty gas and

travelling in the transonic range, as follows

Y
U Y=5Fu(x)
—
8
0 y-«SFE(x) 1 X
Figure 6-1

As shown in Pigure 6~1, the free-stream velocity is U (in the x direction only),
where the coordinates x, y have been normalized with respect to the airfoil chord. The
function F which defines the airfoil surface satisfies max IF“(x) - Fl(X)l =1,

xe(0,1)

We assume that a potential ¢ exists, so that the flow components are given by

*> »>
¢ = (U 4 u,v) = Uex + q (6. 1)

>
where u,v, represent the distrubance velocities, and ex is the unit vector in the x

direction.
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The potential & satisfies the system

R R 2
(I-.z). ~-~20 0 ¢ + (.2_. Yo =0 , (6.2)
x' xx X'y xy Yy yy
~2
2 2 a 2
z—‘-—#g—-. = +52L. (6.3)
Yy -1 Y-~-1

Here, a is the local speed of sound in the dusty gas, which we are going to distinguish
from a, the sound speed in the gas without dust.

9 satisfies the boundary condition

® (x,8Fr _(x))
u,t

= 8r' _(x) (6.4)
.x(x,GPu'l(x)) u,t

of tangent flow along the wing, and

0*0,‘ as x » - , (6.5)

corresponding to uniform flow for upstream. We also assume that the Kutta condition
holds: the flow leaves the trailing edge smoothly.
Under the condition of small distrubances, we may derive a simpler, approximate

equation for the problem. This derivation is achieved through a limit process expansion
~ /3 - toM
for ¢, based on the limit process § + 0, with x,y =8 "y, and K = 273 fixed as
8

Mo+ 1. It has the form
2 ~
O(x,y:8) = u{x + § /Jo(x,y) + .0} . (6.6)
Then ¢ satisfies
(K = (v + 1)0x)0xx + 0; =0 (6.7)
and the boundary conditions
~ 2, L pe
Qy(x,o ) ru'l(x) 0<xct (6.8)
.x'.‘; +0 as x + == , (6.9)
In this context,the Kutta condition may be written as
toxl =0, (6.10)

where TE means trailing edge.
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Additionally, shock jump conditions must be imposed in order to have a complete
problem for ¢. The conditions may be derived from the continuity of the transonic mass
flux vector .

pq = o ule (1 + 64/3(;(0’( -1;—’0:) s Beed b (6.11)
If the shock surface is given by
s(x,;) =x = q(;) =0,

the jump condition is .
- T, - e -0 (6.12)
Purthermore, there is no jump in the tangential component of velocity across the shock,

which may be gquaranteed by imposing
) =0, (6.13)

The form of (6.7) shows that for two flows at different transonic Mach numbers, but
with the same values of ;, these two flows will be geometrically similar (the difference
will be that the ‘'size' of the disturbance will be determined by different factors of

62/3). An analogous similarity law holds for the gas alone, governed by the similarity
parameter K. Both of these similarity laws relate families of flows, for different values
of the displacement thickness at a corresponding Mach number.

We wish to see how the change in the ratio o.f the specific heats for the dusty gas,

;, affects the flow. This will be done by finding a correspondence between the
similarity parameters in the two cases.

We shall develop the correspondence by transforming the boundary value problem (6.2)~-
(6.9) for the dusty gas into a problem for the gas without dust.

Let %(X) = ¢ be the solution operator for the dusty gas boundary value problem. By

defining
-uw’x (6.14a)
7 =uy =8y (6.14b)
¢ =ws (6.14¢)

where w = (%:—:)1/3, and § = w36, we see that (6.7), (6.8) become
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(X = (y + ‘)‘x).xx + ‘;; =0, (6.15) . j

-- * L] A

’y(x,o ) = F“'l(x), 0¢<x<1., (6.16) ——

The other boundary conditions, (6.9) and (6.10), transform readily in the correct manner.

The shock jump condition (6.12), since it can be derived from the divergence form of (6.7),

imposes no additional restriction upon transformation by (6.14).
(6.13).

Therefore, under (6.14) the entire problem for O(x,;n:) transforms to the
corresponding problem for ; (x,;n: }» which is the case of the gas without dust.
(6.7) and (6.15), we conclude

VK = oy(E) .

Now, the similarity parameter K for the new problem is of the form

i-1-if- 1.0 -1-;"-»'2;
53 WP W23 '

from which we conclude t;. = H‘:. Combining (6.17) and (6.18) gives
VK) = wb(e30) .
This relation is equivalent to
O(x,;n:) = w.(x,;m-zz) .

To complete the details, we note

Az "
‘i-i-—n. where ;2 -———7——02
2/3 - (0) -
’ YO+ 25
Pe
from Section 4, so that
(0)
v+ 355
+’ 2
. T "a
K= 5273 '
where Y 1is given by (4.21).
19~

This is also true for

Comparing

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
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Thus, we see from (6.20) that the small disturbance problem for a dusty gas is
equivalent to one for a clear gas, with a modified amplitude of disturbances, a changed
wing thickness ratio and similarity parameter.

(0) (0)

The transformation parameter ®w, as a function of a f/pf , 1s shown in Figure

6.2 for c/{c + r) = 1.0, which is a representative value for many materials.

a(O) péo)

Figure 6.2. w vs. u(o)f/oéo)

Thus, for example, a dusty flow with a mass loading of 2.0 corresponds to a value of
w of 1.21, which means that if the airfoil has thickness §, the flow is equivalent to
that of a clear gas around an airfoil of the same shape, but of thickness
3 = w36 = 1.778. The equivalent similarity parameter X is K = u-z; = 0.68;. This
implies that for a given airfoil, of thickness 60. the solution in a clear gas for
thickness 6‘ - u’&o at similarity parameter Ky can be obtained from the solution in a

dusty gas with a value of w equal to w = (61/60)‘/3, and similarity parameter

(0)

K = uzx « The loading a(O)f/pt ’

0 1 can be obtained from

-20~
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1
w = (61/60)

- 8
Y = -1 +6—1
0

a £ c

- [ c+r

7 (1‘ + 1173

Yy + 1

vy + 1)

8

1
Y = = =1 + 7= (Y + 1)
60

c+r

[- ]

1
(v + W+
c(O)f 50

-1) .
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concentrations of particles and fluid are comparable, is employed. In this .
setting, a model in which the gas and particles may be viewed as an equivalent :
gas with modified properties, is derived. This "generalized gas" model -
behaves like a normal gas with a modified value of Yy (the ratio of specific .
heats). Using this model, a simple method of analyzing transonic small-
disturbance theory, by employing a modified transonic similarity parameter, '.:
is used to account for the effect of the dust. ;..
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